Термины и определения. Коэффициенты отражения и прохождения Как найти коэффициент отражения света

Коэффицие́нт отраже́ния - безразмерная физическая величина , характеризующая способность тела отражать падающее на него излучение . В качестве буквенного обозначения используется греческая \rho или латинская R .

Определения

Количественно коэффициент отражения равен отношению потока излучения , отраженного телом, к потоку, упавшему на тело :

\rho = \frac{\Phi}{\Phi_0}.

Сумма коэффициента отражения и коэффициентов поглощения , пропускания и рассеяния равна единице. Это утверждение следует из закона сохранения энергии .

В тех случаях, когда спектр падающего излучения настолько узок, что его можно считать монохроматическим , говорят о монохроматическом коэффициенте отражения. Если спектр падающего на тело излучения широк, то соответствующий коэффициент отражения иногда называют интегральным .

В общем случае значение коэффициента отражения тела зависит как от свойств самого тела, так и от угла падения, спектрального состава и поляризации излучения. Вследствие зависимости коэффициента отражения поверхности тела от длины волны падающего на него света визуально тело воспринимается как окрашенное в тот или иной цвет.

Коэффициент зеркального отражения \rho_r~(R_r)

Характеризует способность тел зеркально отражать падающее на них излучение. Количественно определяется отношением зеркально отраженного потока излучения \Phi_r к падающему потоку:

\rho_r=\frac{\Phi_r}{\Phi_0}.

Зеркальное (направленное) отражение происходит в тех случаях, когда излучение падает на поверхность, размеры неровностей которой значительно меньше, чем длина волны излучения.

Коэффициент диффузного отражения \rho_d~(R_d)

Характеризует способность тел диффузно отражать падающее на них излучение. Количественно определяется отношением диффузно отраженного потока излучения \Phi_d к падающему потоку:

\rho_d=\frac{\Phi_d}{\Phi_0}.

Если одновременно происходят и зеркальное, и диффузное отражения, то коэффициент отражения \rho является суммой коэффициентов зеркального \rho_r и диффузного \rho_d отражений:

\rho=\rho_r+\rho_d.

См. также

Напишите отзыв о статье "Коэффициент отражения (оптика)"

Примечания

Отрывок, характеризующий Коэффициент отражения (оптика)

– Ах, Наташа! – сказала она.
– Видела? Видела? Что видела? – вскрикнула Наташа, поддерживая зеркало.
Соня ничего не видала, она только что хотела замигать глазами и встать, когда услыхала голос Наташи, сказавшей «непременно»… Ей не хотелось обмануть ни Дуняшу, ни Наташу, и тяжело было сидеть. Она сама не знала, как и вследствие чего у нее вырвался крик, когда она закрыла глаза рукою.
– Его видела? – спросила Наташа, хватая ее за руку.
– Да. Постой… я… видела его, – невольно сказала Соня, еще не зная, кого разумела Наташа под словом его: его – Николая или его – Андрея.
«Но отчего же мне не сказать, что я видела? Ведь видят же другие! И кто же может уличить меня в том, что я видела или не видала?» мелькнуло в голове Сони.
– Да, я его видела, – сказала она.
– Как же? Как же? Стоит или лежит?
– Нет, я видела… То ничего не было, вдруг вижу, что он лежит.
– Андрей лежит? Он болен? – испуганно остановившимися глазами глядя на подругу, спрашивала Наташа.
– Нет, напротив, – напротив, веселое лицо, и он обернулся ко мне, – и в ту минуту как она говорила, ей самой казалось, что она видела то, что говорила.
– Ну а потом, Соня?…
– Тут я не рассмотрела, что то синее и красное…
– Соня! когда он вернется? Когда я увижу его! Боже мой, как я боюсь за него и за себя, и за всё мне страшно… – заговорила Наташа, и не отвечая ни слова на утешения Сони, легла в постель и долго после того, как потушили свечу, с открытыми глазами, неподвижно лежала на постели и смотрела на морозный, лунный свет сквозь замерзшие окна.

Вскоре после святок Николай объявил матери о своей любви к Соне и о твердом решении жениться на ней. Графиня, давно замечавшая то, что происходило между Соней и Николаем, и ожидавшая этого объяснения, молча выслушала его слова и сказала сыну, что он может жениться на ком хочет; но что ни она, ни отец не дадут ему благословения на такой брак. В первый раз Николай почувствовал, что мать недовольна им, что несмотря на всю свою любовь к нему, она не уступит ему. Она, холодно и не глядя на сына, послала за мужем; и, когда он пришел, графиня хотела коротко и холодно в присутствии Николая сообщить ему в чем дело, но не выдержала: заплакала слезами досады и вышла из комнаты. Старый граф стал нерешительно усовещивать Николая и просить его отказаться от своего намерения. Николай отвечал, что он не может изменить своему слову, и отец, вздохнув и очевидно смущенный, весьма скоро перервал свою речь и пошел к графине. При всех столкновениях с сыном, графа не оставляло сознание своей виноватости перед ним за расстройство дел, и потому он не мог сердиться на сына за отказ жениться на богатой невесте и за выбор бесприданной Сони, – он только при этом случае живее вспоминал то, что, ежели бы дела не были расстроены, нельзя было для Николая желать лучшей жены, чем Соня; и что виновен в расстройстве дел только один он с своим Митенькой и с своими непреодолимыми привычками.

Коэффициентом пропускания

коэффициентом отражения

и коэффициентом поглощения

Коэффициенты t, r и a зависят от свойств самого тела и длины волны падающего излучения. Спектральная зависимость, т.е. зависимость коэффициентов от длины волны, определяет цвет как прозрачных, так и непрозрачных (t= 0) тел.

Согласно закону сохранения энергии

Ф отр + Ф погл + Ф пр = . (8)

Разделив обе части равенства на , получим:

r + a +t = 1. (9)

Тело, для которого r=0, t=0, a=1 называется абсолютно чёрным .

Абсолютно черное тело при любой температуре полностью поглощает всю энергию падающего на него излучения любой длины волны. Все реальные тела не являются абсолютно черными. Однако некоторые из них в определенных интервалах длин волн близки по своим свойствам к абсолютно черному телу. Например, в области длин волн видимого света коэффициенты поглощения сажи, платиновой черни и черного бархата мало отличаются от единицы. Наиболее совершенной моделью абсолютно чёрного тела может служить малое отверстие в замкнутой полости. Очевидно, что эта модель тем ближе по характеристикам к черному телу, чем больше отношение площади поверхности полости к площади отверстия (рис. 1).

Спектральной характеристикой поглощения электромагнитных волн телом является спектральный коэффициент поглощения a l – величина, определяемая отношением поглощённого телом потока излучения в малом спектральном интервале (от l до l + d l) к потоку падающего на него излучения в том же спектральном интервале:

. (10)

Излучательная и поглощательная способности непрозрачного тела взаимосвязаны. Отношение спектральной плотности энергетической светимости равно­весного излучения тела к его спектральному коэффициенту поглощения не зависит от природы тела; для всех тел оно является универсальной функцией длины волны и температуры (законКирхгофа ):

. (11)

Для абсолютно чёрного тела a l = 1. Поэтому из закона Кирхгофа следует, что М е , l = , т.е. универсальная функция Кирхгофа представляет собой спектральную плотность энергетической светимости абсолютно чёрного тела.

Таким образом, согласно закону Кирхгофа, для всех тел отношение спектральной плотности энергетической светимости к спектральному коэффициенту поглощения равно спектральной плотности энергетической светимости абсолютно чёрного тела при тех же значениях T и l.

Из закона Кирхгофа следует, что спектральная плотность энергети­ческой светимости любого тела в любой области спектра всегда меньше спектральной плотности энергетической светимости абсолютно чёрного тела (при одних и тех же значениях длины волны и температуры). Кроме того, из этого закона вытекает, что если тело при некоторой температуре не поглощает электромагнитные волны в интервале от l до l + d l, то оно их в этом интервале длин при данной температуре и не излучает.

Аналитический вид функции для абсолютно черного тела
был установлен Планком на основе квантовых представлений о природе излучения:

(12)

Спектр излучения абсолютно черного тела имеет характерный максимум (рис. 2), который при повышении температуры сдвигается в коротковолновую часть (рис. 3). Положение максимума спектральной плотности энергетической светимости можно определить из выражения (12) обычным способом, приравняв к нулю первую производную:

. (13)

Обозначив , получим:

х – 5 ( – 1) = 0. (14)

Рис. 2 Рис. 3

Решение этого трансцендентного уравнения численным методом дает
х = 4, 965.

Следовательно,

, (15)

= = b 1 = 2, 898· м·K, (16)

Таким образом, функция достигает максимума при длине волны, обратно пропорциональной термодинамической температуре абсолютно черного тела (первый закон Вина ).

Из закона Вина следует, что при низких температурах излучаются преимущественно длинные (инфракрасные) электромагнитные волны. По мере же возрастания температуры увеличивается доля излучения, приходящаяся на видимую область спектра, и тело начинает светиться. С дальнейшим ростом температуры яркость его свечения увеличивается, а цвет изменяется. Поэтому цвет излучения может служить характеристикой температуры излучения. Примерная зависимость цвета свечения тела от его температуры приведена в табл. 1.

Таблица 1

Первый закон Вина называют так же законом смещения , подчёркивая тем самым, что с ростом температуры максимум спектральной плотности энергетической светимости сдвигается в сторону меньших длин волн.

Подставив формулу (17) в выражение (12), нетрудно показать, что максимальное значение функции пропорционально пятой степени термодинами­ческой температуры тела (второй закон Вина ):

Энергетическую светимость абсолютно черного тела можно найти из выражения (12) простым интегрированием по длине волны

(18)

где – приведенная постоянная Планка,

Энергетическая светимость абсолютно чёрного тела пропорциональна четвёртой степени его термодинамической температуры. Это положение носит название закона Стефана – Больцмана , а коэффициент пропор­циональности s = 5,67×10 -8 постоянной Стефана – Больцмана.

Абсолютно чёрное тело является идеализацией реальных тел. Реальные тела испускают излучение, спектр которого не описывается формулой Планка. Их энергетическая светимость, кроме температуры, зависит от природы тела и состояния его поверхности. Эти факторы можно учесть, если в формулу (19) ввести коэффициент , показывающий, во сколько раз энергетическая свети­мость абсолютно чёрного тела при данной температуре больше энер­гетической светимости реального тела при той же температуре

откуда , или (21)

Для всех реальных тел <1 и зависит как от природы тела и состояния его поверхности, так и от температуры. В частности, для вольфрамовых нитей электроламп накаливания зависимость от Т имеет вид, представленный на рис. 4.

Измерение энергии излучения и температуры электропечи основано на эффекте Зеебека, заключающемся в возникновении электродвижущей силы в электрической цепи, состоящей из нескольких разнородных проводников, контакты которых имеют различную температуру.

Два разнородных проводника образуют термопару , а последовательно соединенные термопары – термостолбик. Если контакты (обычно спаи) проводников находятся при различных температурах, то в замкнутой цепи, включающей термопары, возникает термоЭДС, величина которой однозначно определяется разностью температур горячих и холодных контактов, количеством последовательно соединенных термопар и природой материалов проводников.

Величина термоЭДС, возникающей в цепи за счет энергии падающего на спаи термостолбика излучения, измеряется милливольтметром, размещенным на передней панели измерительного устройства. Шкала этого прибора проградуирована в милливольтах.

Температура абсолютно черного тела (печи) измеряется с помощью термоэлектрического термометра, состоящего из одной термопары. Её ЭДС измеряется милливольтметром, также расположенным на передней панели измерительного устройства и проградуированным в °С.

Примечание. Милливольтметр фиксирует разность температур горячего и холодного спаев термопары, поэтому для получения температуры печи необходимо к показанию прибора прибавить значение температуры в помещении.

В данной работе проводят измерение термоЭДС термостолбика, величина которой пропорциональна энергии, затраченной на нагревание одного из контактов каждой термопары столбика, и, следовательно, энергетической светимости (при равных интервалах времени между измерениями и неизменной площади излучателя):

где b – коэффициент пропорциональности.

Приравнивая правые части равенств (19) и (22), получаем:

Т 4 =b ×e,

где с – постоянная величина.

Одновременно с измерением термоЭДС термостолбика измеряют разность температур Δt горячего и холодного спаев термопары, помещенной в электропечь, и определяют температуру печи.

Используя экспериментально полученные значения температуры абсолютно черного тела (печи) и соответствующие им значения термоЭДС термостолбика, определяют значение коэффициента пропорционально-
сти с , которое во всех опытах должно быть одинаковым. Затем строят график зависимости с= f(Т), который должен иметь вид прямой, параллельной оси температур.

Таким образом, в лабораторной работе устанавливаетсяхарактер зависимости энергетической светимости абсолютно черного тела от его температуры, т.е. проверяется закон Стефана–Больцмана.

    Коэффициент отражения поверхности. Средневзвешенный коэффициент отражения внутренных поверхностей помещения. Коэффицент пропускания.

Важнейшим свойством поверхности объекта, определяющий его цвет и яркость, является коэффициент отражения поверхности на различных частотах: в видимом, инфракрасном и радиодиапазоне. Коэффициент отражения поверхности (р) характеризует способность поверхности отражать падающий на нее световой поток; определяется отношением светового потока отраженного от поверхности, к падающему на нее световому потоку

Средневзвешенный коэффициент отражения внутренных поверхностей помещения (р ср ) где S ст, S пот, S пол – соответственно площади стен, потолка и пола, м 2 а Р ст, Р пот, Р пол – соответственно коэффиценты отражения стен, потолка и пола.

Коэффицент пропускания, - отношение светового потока, прошедшего через слой, к световому потоку, падающему на слой: τ=F/F. Коэффициент пропускания является мерой прозрачности слоя. В зависимости от характера изменения пучка при прохождении через слой различают пропускание направленное, рассеянное, направленно-рассеянное и смешанное. Совершенно очевидно, что коэффициент пропускания всегда меньше единицы, поскольку все тела более или менее поглощают проходящий через них свет и поглощение тем больше, чем толще слой.

3. Естественное освещение кео

Что такое коэффициент естественной освещенности (КЕО)?

Это выраженное в процентах отношение естественной освещенности Е В ­ в какой либо точке на рабочей поверхности внутри помещении к одновременному значению наружной горизонтальной освещенности Е н, создаваемой рассеяным светом полностьь открытого небосвода. е = Е в /Е н *100%

КЕО показывает, какую долю освещенность в данной точке помещения составляет от одновременной освещенности горизонтальной поверхности на открытом месте при диффузном свете неба

    Какие факторы влияют на значения коэффициента естественной освещенностив расчетной точке помещения?

    Неравномерная яркость небосвода

    Влияние остекления оконных проемов

    Усиление освещенности отраженным светом

4. Нормирование коэффициента естественной освещенности.

От каких факторов зависит нормативное значение коэффициента естественной освещенности?

Кроме назначения помещения(характера пыполняемой в помещении зрительной работы), при нормировании естественного освещения учитывается так же световой климат района строительства (т.е превалирующие условия наружной освещенности, количество солнечных лучей, устойчивость снежного покрова) и ориентация светового проема по сторонам горизонта. В силу этого нормированное з начение КЕО определяют по формуле

Принципы нормирования коэффициента естественной освещенности.

5. Геометрические кео

Принцип расчета геометрического КЕО

Учитывается только диффузный свет неба и не учитываются реальные условия освящения: неравномерность, яркость небосвода, влияние остекления оконных проемов, отраженный свет. Определяется с помощью гр.Данилюка. при построение небосвод представляют в виде равномерно яркой полусферы с центром в расчетной точке, светящаяся сферическая пов-ть небосвода разбита на 10 4 участков, площади проэкций которых на горизонтальную пов-ть основания одинаковы. От каждого участка небосвода в расчетную точку приводит один луч. Освещенность в точке на горизонт. пов-ти плоскостью открытия небосводом Е н соответствует 10 4 лучей. Внутри помещения Е в соответствует числу лучей N, поподающих через световой проем.

Порядок расчета (по гр. Данилюка ):

    Вычертить план и разрез в одном масштабе

    Определить положение расчетной точки и плоскости.

    На разрезе соединить расчетную точку с гранями светопро ема через которые видна небесная сфера

    По гр.1 определить количество лучей, для этого расчетную точку совместить с полюсом графика, расчётную плоскость с горизонтальной осью грани. Лучами считать расстояния между сплошными линиями. Пунктирные линии на графике 1 – 10ые доли луча.

    Поставить точку С, разделив участок пополам.

    По гр.1 определить номер полуокружности проходящей вблизи точки С.

    На плане(2ой график) разместить вертикальную ось графика совпадающую с характерным расчетным разрезом.

    Номер горизонтали соответствует номеру полуокружности, совместить с наружной гранью.

    Определить количество лучей

    Вычисляем геометрический коэффициент естественной освещенности

График Данилюка накладывается на поперечный разрез здания, центр графика совмещается с точкой. подсчитывается количество лучей n1, отмечается номер полуокружности, которая проходит через точку С-середина светового проема. График 2 накладывается на план. Его ось совпадает с горизонтом и проходит через точку С. По номеру полуокружности, подсчитываем количество лучей проходящее через световой проем.

Вычисленный по гр. Данилюка КЕО совпадает с расчетным, если небосвод равномерно яркий, в световом проеме нет заполнения(рам,стекол, и т. п.), подстилающий слой земл и поверхности помещения абсолютно черные.

Графики Данилюка

Каждый график содержит 100 лучей. Нумерация лучей идет от оси графика в обе стороны. Луч- это промежуток между сплошными линиями. Пунктирные линии на графике 1 – 10ые доли луча(50). Каждой дуге (полуокружности) на гр.1 соответствует горизонталь(горизонтальная линия) на графике 2. Дуги и горизонтали на графиках пронумерованы. Разработаны на основе закона телесного угла.

Выберите рубрику Книги Математика Физика Контроль и управления доступом Пожарная безопасность Полезное Поставщики оборудования Cредства измерений (КИП) Измерение влажности — поставщики в РФ. Измерение давления. Измерение расходов. Расходомеры. Измерение температуры Измерение уровней. Уровнемеры. Бестраншейные технологии Канализационные системы. Поставщики насосов в РФ. Ремонт насосов. Трубопроводная арматура. Затворы поворотные (дисковые затворы). Обратные клапаны. Регулирующая арматура. Фильтры сетчатые, грязевики, магнито-механические фильтры. Шаровые краны. Трубы и элементы трубопроводов. Уплотнения резьб, фланцев и т.д. Электродвигатели, электроприводы… Руководство Алфавиты, номиналы, единицы, коды… Алфавиты, в т.ч. греческий и латинский. Символы. Коды. Альфа, бета, гамма, дельта, эпсилон… Номиналы электрических сетей. Перевод единиц измерения Децибел. Сон. Фон. Единицы измерения чего? Единицы измерения давления и вакуума. Перевод единиц измерения давления и вакуума. Единицы измерения длины. Перевод единиц измерения длины (линейного размера, расстояний). Единицы измерения объема. Перевод единиц измерения объема. Единицы измерения плотности. Перевод единиц измерения плотности. Единицы измерения площади. Перевод единиц измерения площади. Единицы измерения твердости. Перевод единиц измерения твердости. Единицы измерения температуры. Перевод единиц температур в шкалах Кельвина (Kelvin) / Цельсия (Celsius) / Фаренгейта (Fahrenheit) / Ранкина (Rankine) / Делисле (Delisle) / Ньютона (Newton) / Реамюрa Единицы измерения углов ("угловых размеров"). Перевод единиц измерения угловой скорости и углового ускорения. Стандартные ошибки измерений Газы различные как рабочие среды. Азот N2 (хладагент R728) Аммиак (холодильный агент R717). Антифризы. Водород H^2 (хладагент R702) Водяной пар. Воздух (Атмосфера) Газ природный — натуральный газ. Биогаз — канализационный газ. Сжиженный газ. ШФЛУ. LNG. Пропан-бутан. Кислород O2 (хладагент R732) Масла и смазки Метан CH4 (хладагент R50) Свойства воды. Угарный газ CO. Монооксид углерода. Углекислый газ CO2. (Холодильный агент R744). Хлор Cl2 Хлороводород HCl, он же — Cоляная кислота. Холодильные агенты (хладагенты). Хладагент (холодильный агент) R11 — Фтортрихлорметан (CFCI3) Хладагент (Холодильный агент) R12 — Дифтордихлорметан (CF2CCl2) Хладагент (Холодильный агент) R125 — Пентафторэтан (CF2HCF3). Хладагент (Холодильный агент) R134а — 1,1,1,2-Тетрафторэтан (CF3CFH2). Хладагент (Холодильный агент) R22 — Дифторхлорметан (CF2ClH) Хладагент (Холодильный агент) R32 — Дифторметан (CH2F2). Хладагент (Холодильный агент) R407С — R-32 (23%)/ R-125 (25%)/ R-134a (52%)/ Проценты по массе. другие Материалы — тепловые свойства Абразивы — зернистость, мелкость, шлифовальное оборудование. Грунты, земля, песок и другие породы. Показатели разрыхления, усадки и плотности грунтов и пород. Усадка и разрыхление, нагрузки. Углы откоса, отвала. Высоты уступов, отвалов. Древесина. Пиломатериалы. Лесоматериалы. Бревна. Дрова… Керамика. Клеи и клеевые соединения Лед и снег (водяной лед) Металлы Алюминий и сплавы алюминия Медь, бронзы и латуни Бронза Латунь Медь (и классификация медных сплавов) Никель и сплавы Соответствие марок сплавов Стали и сплавы Cправочные таблицы весов металлопроката и труб. +/-5% Вес трубы. Вес металла. Механические свойства сталей. Чугун Минералы. Асбест. Продукты питания и пищевое сырье. Свойства и пр. Ссылка на другой раздел проекта. Резины, пластики, эластомеры, полимеры. Подробное описание Эластомеров PU, ТPU, X-PU, H-PU, XH-PU, S-PU, XS-PU, T-PU, G-PU (CPU), NBR, H-NBR, FPM, EPDM, MVQ, TFE/P, POM, PA-6, TPFE-1, TPFE-2, TPFE-3, TPFE-4, TPFE-5 (PTFE модифицированный), Сопротивление материалов. Сопромат. Строительные материалы. Физические, механические и теплотехнические свойства. Бетон. Бетонный раствор. Раствор. Строительная арматура. Стальная и прочая. Таблицы применимости материалов. Химическая стойкость. Температурная применимость. Коррозионная стойкость. Уплотнительные материалы — герметики соединений. PTFE (фторопласт-4) и производные материалы. Лента ФУМ. Анаэробные клеи Герметики невысыхающие (незастывающие). Герметики силиконовые (кремнийорганические). Графит, асбест, парониты и производные материалы Паронит. Терморасширенный графит (ТРГ, ТМГ), композиции. Свойства. Применение. Производство. Лен сантехнический Уплотнители резиновых эластомеров Утеплители и теплоизоляционные материалы. (ссылка на раздел проекта) Инженерные приемы и понятия Взрывозащита. Защита от воздействия окружающей среды. Коррозия. Климатические исполнения (Таблицы совместимости материалов) Классы давления, температуры, герметичности Падение (потеря) давления. — Инженерное понятие. Противопожарная защита. Пожары. Теория автоматического управления (регулирования). ТАУ Математический справочник Арифметическая, Геометрическая прогрессии и суммы некоторых числовых рядов. Геометрические фигуры. Свойства, формулы: периметры, площади, объемы, длины. Треугольники, Прямоугольники и т.д. Градусы в радианы. Плоские фигуры. Свойства, стороны, углы, признаки, периметры, равенства, подобия, хорды, секторы, площади и т.д. Площади неправильных фигур, объемы неправильных тел. Средняя величина сигнала. Формулы и способы расчета площади. Графики. Построение графиков. Чтение графиков. Интегральное и дифференциальное исчисление. Табличные производные и интегралы. Таблица производных. Таблица интегралов. Таблица первообразных. Найти производную. Найти интеграл. Диффуры. Комплексные числа. Мнимая единица. Линейная алгебра. (Вектора, матрицы) Математика для самых маленьких. Детский сад — 7 класс. Математическая логика. Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы. Решение дифференциальных уравнений Примеры решений обыкновенных дифференциальных уравнений порядка выше первого. Примеры решений простейших = решаемых аналитически обыкновенных дифференциальных уравнений первого порядка. Системы координат. Прямоугольная декартова, полярная, цилиндрическая и сферическая. Двухмерные и трехмерные. Системы счисления. Числа и цифры (действительные, комплексные, ….). Таблицы систем счисления. Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды. Таблицы логарифмов и основные формулы Таблицы численных значений Таблицы Брадиса. Теория вероятностей и статистика Тригонометрические функции, формулы и графики. sin, cos, tg, ctg….Значения тригонометрических функций. Формулы приведения тригонометрических функций. Тригонометрические тождества. Численные методы Оборудование — стандарты, размеры Бытовая техника, домашнее оборудование. Водосточные и водосливные системы. Емкости, баки, резервуары, танки. КИПиА Контрольно-измерительные приборы и автоматика. Измерение температуры. Конвейеры, ленточные транспортеры. Контейнеры (ссылка) Крепеж. Лабораторное оборудование. Насосы и насосные станции Насосы для жидкостей и пульп. Инженерный жаргон. Словарик. Просеивание. Фильтрация. Сепарация частиц через сетки и сита. Прочность примерная веревок, тросов, шнуров, канатов из различных пластиков. Резинотехнические изделия. Сочленения и присоединения. Диаметры условные, номинальные, Ду, DN, NPS и NB. Метрические и дюймовые диаметры. SDR. Шпонки и шпоночные пазы. Стандарты коммуникации. Сигналы в системах автоматизации (КИПиА) Аналоговые входные и выходные сигналы приборов, датчиков, расходомеров и устройств автоматизации. Интерфейсы подключения. Протоколы связи (коммуникации) Телефонная связь. Трубопроводная арматура. Краны, клапаны, задвижки…. Строительные длины. Фланцы и резьбы. Стандарты. Присоединительные размеры. Резьбы. Обозначения, размеры, использование, типы… (справочная ссылка) Соединения ("гигиенические", "асептические") трубопроводов в пищевой, молочной и фармацевтической промышленности. Трубы, трубопроводы. Диаметры труб и другие характеристики. Выбор диаметра трубопровода. Скорости потока. Расходы. Прочность. Таблицы выбора, Падение давления. Трубы медные. Диаметры труб и другие характеристики. Трубы поливинилхлоридные (ПВХ). Диаметры труб и другие характеристики. Трубы полиэтиленовые. Диаметры труб и другие характеристики. Трубы полиэтиленовые ПНД. Диаметры труб и другие характеристики. Трубы стальные (в т.ч. нержавеющие). Диаметры труб и другие характеристики. Труба стальная. Труба нержавеющая. Трубы из нержавеющей стали. Диаметры труб и другие характеристики. Труба нержавеющая. Трубы из углеродистой стали. Диаметры труб и другие характеристики. Труба стальная. Фитинги. Фланцы по ГОСТ, DIN (EN 1092-1) и ANSI (ASME). Соединение фланцев. Фланцевые соединения. Фланцевое соединение. Элементы трубопроводов. Электрические лампы Электрические разъемы и провода (кабели) Электродвигатели. Электромоторы. Электрокоммутационные устройства. (Ссылка на раздел) Стандарты личной жизни инженеров География для инженеров. Расстояния, маршруты, карты….. Инженеры в быту. Семья, дети, отдых, одежда и жилье. Детям инженеров. Инженеры в офисах. Инженеры и другие люди. Социализация инженеров. Курьезы. Отдыхающие инженеры. Это нас потрясло. Инженеры и еда. Рецепты, полезности. Трюки для ресторанов. Международная торговля для инженеров. Учимся думать барыжным образом. Транспорт и путешествия. Личные автомобили, велосипеды…. Физика и химия человека. Экономика для инженеров. Бормотология финансистов — человеческим языком. Технологические понятия и чертежи Бумага писчая, чертежная, офисная и конверты. Стандартные размеры фотографий. Вентиляция и кондиционирование. Водоснабжение и канализация Горячее водоснабжение (ГВС). Питьевое водоснабжение Сточная вода. Холодное водоснабжение Гальваническая промышленность Охлаждение Паровые линии / системы. Конденсатные линии / системы. Паропроводы. Конденсатопроводы. Пищевая промышленность Поставка природного газа Сварочные металлы Символы и обозначения оборудования на чертежах и схемах. Условные графические изображения в проектах отопления, вентиляции, кондиционирования воздуха и теплохолодоснабжения, согласно ANSI/ASHRAE Standard 134-2005. Стерилизация оборудования и материалов Теплоснабжение Электронная промышленность Электроснабжение Физический справочник Алфавиты. Принятые обозначения. Основные физические константы. Влажность абсолютная, относительная и удельная. Влажность воздуха. Психрометрические таблицы. Диаграммы Рамзина. Время Вязкость, Число Рейнольдса (Re). Единицы измерения вязкости. Газы. Свойства газов. Индивидуальные газовые постоянные. Давление и Вакуум Вакуум Длина, расстояние, линейный размер Звук. Ультразвук. Коэффициенты звукопоглощения (ссылка на другой раздел) Климат. Климатические данные. Природные данные. СНиП 23-01-99. Строительная климатология. (Статистика климатических данных) СНИП 23-01-99 .Таблица 3 — Средняя месячная и годовая температура воздуха, °С. Бывший СССР. СНИП 23-01-99 Таблица 1. Климатические параметры холодного периода года. РФ. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. Бывший СССР. СНИП 23-01-99 Таблица 2. Климатические параметры теплого периода года. РФ. СНИП 23-01-99 Таблица 3. Средняя месячная и годовая температура воздуха, °С. РФ. СНиП 23-01-99. Таблица 5а* — Среднее месячное и годовое парциальное давление водяного пара, гПа = 10^2 Па. РФ. СНиП 23-01-99. Таблица 1. Климатические параметры холодного времени года. Бывший СССР. Плотности. Веса. Удельный вес. Насыпная плотность. Поверхностное натяжение. Растворимость. Растворимость газов и твердых веществ. Свет и цвет. Коэффициенты отражения, поглощения и преломления Цветовой алфавит:) — Обозначения (кодировки) цвета (цветов). Свойства криогенных материалов и сред. Таблицы. Коэффициенты трения для различных материалов. Тепловые величины, включая температуры кипения, плавления, пламени и т.д …… дополнительная информация см.: Коэффициенты (показатели) адиабаты. Конвекционный и полный теплообмен. Коэффициенты теплового линейного расширения, теплового объемного расширения. Температуры, кипения, плавления, прочие… Перевод единиц измерения температуры. Воспламеняемость. Температура размягчения. Температуры кипения Температуры плавления Теплопроводность. Коэффициенты теплопроводности. Термодинамика. Удельная теплота парообразования (конденсации). Энтальпия парообразования. Удельная теплота сгорания (теплотворная способность). Потребность в кислороде. Электрические и магнитные величины Дипольные моменты электрические. Диэлектрическая проницаемость. Электрическая постоянная. Длины электромагнитных волн (справочник другого раздела) Напряженности магнитного поля Понятия и формулы для электричества и магнетизма. Электростатика. Пьезоэлектрические модули. Электрическая прочность материалов Электрический ток Электрическое сопротивление и проводимость. Электронные потенциалы Химический справочник "Химический алфавит (словарь)" — названия, сокращения, приставки, обозначения веществ и соединений. Водные растворы и смеси для обработки металлов. Водные растворы для нанесения и удаления металлических покрытий Водные растворы для очистки от нагара (асфальтосмолистого нагара, нагара двигателей внутреннего сгорания…) Водные растворы для пассивирования. Водные растворы для травления — удаления окислов с поверхности Водные растворы для фосфатирования Водные растворы и смеси для химического оксидирования и окрашивания металлов. Водные растворы и смеси для химического полирования Обезжиривающие водные растворы и органические растворители Водородный показатель pH. Таблицы показателей pH. Горение и взрывы. Окисление и восстановление. Классы, категории, обозначения опасности (токсичности) химических веществ Периодическая система химических элементов Д.И.Менделеева. Таблица Менделеева. Плотность органических растворителей (г/см3)в зависимости от температуры. 0-100 °С. Свойства растворов. Константы диссоциации, кислотности, основности. Растворимость. Смеси. Термические константы веществ. Энтальпии. Энтропии. Энергии Гиббса… (ссылка на химический справочник проекта) Электротехника Регуляторы Системы гарантированного и бесперебойного электроснабжения. Системы диспетчеризации и управления Структурированные кабельные системы Центры обработки данных

Более гигиеничной считается система общего освещения, но так как она требует значительных энергетических затрат на эксплуатацию, сферу ее использования ограничивают. Систему общего освещения разрешают применять в основном в помещениях общественных зданий, в помещениях с большой плотностью размещения рабочих мест и при отсутствии оборудования, создающего тени. Эту систему используют при работах, не требующих большого напряжения зрения (V–VII разряды) и при выполнении однотипных работ.

Система комбинированного освещения с позиции экономии электроэнергии почти всегда рациональна:

· при выполнении точных зрительных работ (I–IV разряды);

· в помещениях, в которых эксплуатируется оборудование, создающее глубокие и резкие тени, и при необходимости регулирования направления светового потока;

· при освещении вертикальных и наклонных поверхностей.

В результате экономичности комбинированной системы освещения действующие нормативы разрешают создавать освещенность в 1,5–2 раза выше, чем при общей системе.

1.4. Нормы минимальной освещенности рабочей поверхности, наряду с перечисленными показателями, зависят также от типа источника света.

Для освещения помещений используются в основном газоразрядные лампы или лампы накаливания. Каждый из этих видов источников света имеет свои достоинства и недостатки, что и определяет условия их применения. Газоразрядные лампы по сравнению с лампами накаливания обладают более высокой световой отдачей при одной и той же установочной мощности, что приводит к экономии эксплуатационных затрат. Спектр светового потока этих ламп в большинстве случаев более близок к естественному и обеспечивает правильную цветопередачу. Кроме того, газоразрядные лампы характеризуются более продолжительным периодом службы по сравнению с лампами накаливания. Эти лампы рекомендуется использовать в помещениях, где работа связана с большим и длительным напряжением зрения, например, в системе общего освещения, при выполнении работ I–V разрядов. Эти же лампы применяют в помещениях, где производятся работы, требующие различения цветов. В помещениях без естественного света также предпочтительнее люминесцентные лампы.

Наряду с достоинствами газоразрядные лампы имеют ряд недостатков, не присущих лампам накаливания. Так, они очень чувствительны к изменению температуры окружающей среды. Стабильная их работа обеспечивается только при температуре от + 5 0 С до + 50 0 С. Работа газоразрядных ламп сопровождается пульсациями, что препятствует их эксплуатации в условиях, где возможно возникновение стробоскопического эффекта, который проявляется в искажении зрительного восприятия (искажаются ощущения направления движения предметов, изображение одного предмета воспринимается как изображение нескольких и т. п.). При низких освещенностях газоразрядные лампы снижают активность деятельности работника и создают субъективные ощущения «сумеречности».

Для выполнения грубых работ, требующих по нормам низкую освещенность (менее 50 лк), рекомендуется использовать лампы накаливания. Эти же лампы допускается применять в случаях, когда нет повышенных требований к правильному различению оттенков. Кроме того, лампы накаливания целесообразно применять, когда возможно возникновение стробоскопического эффекта или взрыва.

1.5. В табл. 4 приведены значения нормируемой освещенности, которую должны создавать газоразрядные лампы на рабочих местах производственных помещений при выполнении зрительных работ различной точности с учетом системы освещения . Нормы освещенности, создаваемые лампами накаливания, определяются снижением на одну ступень указанных в таблице значений.

Существует ряд условий, при наличии которых необходимо изменять (повышать или уменьшать) нормируемую величину минимальной освещенности, несмотря на то, что выполняется зрительная работа равных разрядов и подразрядов, при одной и той же системе освещения и одинаковых источниках света.

Значения нормируемой освещенности, указанные в таблице 4, повышаются:

а) при работах I–IV разрядов, если зрительная работа занимает более половины рабочего дня;

б) при повышенной опасности травматизма на рабочих местах, где нормируемая освещенность при системе общего освещения составляет менее 150 лк;

в) при специальных повышенных санитарных требованиях к производственным помещениям, в которых нормируется освещенность менее 500 лк для системы общего освещения;

г) в помещениях, специально предназначенных для работы или обучения подростков, если нормируемая освещенность не превышает 300 лк;

д) в помещениях без естественного света, предназначенных для постоянного пребывания людей, если освещенность от системы общего освещения ниже 100 лк;

Таблица 4

Что еще почитать