Теория очередей в примерах. Теория массового обслуживания. Использование очередей отложенных действий

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций - типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах многих советских и зарубежных математиков.

Теория очередей, - раздел теории вероятностей, изучающий математические модели разного рода реальных массового обслуживания систем. Эти модели представляют собой случайные процессы специального вида, которые называются иногда процессами обслуживания. Чаще всего используется описательное определение этих процессов, поскольку формальное их построение оказывается весьма сложным и не всегда эффективным.

Теория массового обслуживания использует главным образом аппарат теории вероятностей. Основные задачи теории массового обслуживания обычно состоят в том, чтобы на основании "локальных" свойств рассматриваемых случайных процессов изучить их стационарные характеристики (если таковые существуют) или поведение этих характеристик за большой промежуток времени. Одна из главных конечных целей исследований в этой области состоит в выборе наиболее разумной организации систем массового обслуживания.

Системы массового обслуживания (СМО)-- это такие системы, в которые в случайные моменты времени поступают заявки на обслуживание, при этом поступившие заявки обслуживаются с помощью имеющихся в распоряжении системы каналов обслуживания.

С позиции моделирования процесса массового обслуживания ситуации, когда образуются очереди заявок (требований) на обслуживание, возникают следующим образом. Поступив в обслуживающую систему, требование присоединяется к очереди других (ранее поступивших) требований. Канал обслуживания выбирает требование из находящихся в очереди, с тем, чтобы приступить к его обслуживанию. После завершения процедуры обслуживания очередного требования канал обслуживания приступает к обслуживанию следующего требования, если таковое имеется в блоке ожидания.

Цикл функционирования системы массового обслуживания подобного рода повторяется многократно в течение всего периода работы обслуживающей системы. При этом предполагается, что переход системы на обслуживание очередного требования после завершения обслуживания предыдущего требования происходит мгновенно, в случайные моменты времени.

Примерами систем массового обслуживания могут служить: Магазины, банки, ремонтные мастерские, почтовые отделения, посты технического обслуживания автомобилей, посты ремонта автомобилей, персональные компьютеры, обслуживающие поступающие заявки или требования на решение тех или иных задач, аудиторские фирмы, отделы налоговых инспекций, занимающиеся приемкой и проверкой текущей отчетности предприятий, телефонные станции и т.д.

Основными компонентами системы массового обслуживания любого вида являются:

входной поток поступающих требований или заявок на обслуживание;

дисциплина очереди;

механизм обслуживания.

Входной поток требований. Для описания входного потока требуется задать вероятностный закон, определяющий последовательность моментов поступления требований на обслуживание и указать количество таких требований в каждом очередном поступлении. При этом, как правило, оперируют понятием «вероятностное распределение моментов поступления требований». Здесь могут поступать как единичные, так и групповые требования (требования поступают группами в систему). В последнем случае обычно речь идет о системе обслуживания с параллельно-групповым обслуживанием.

Дисциплина очереди -- это важный компонент системы массового обслуживания, он определяет принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания. Чаще всего используются дисциплины очереди, определяемые следующими правилами:

  • - первым пришел - первый обслуживаешься;
  • - пришел последним -- обслуживаешься первым;
  • - случайный отбор заявок;
  • - отбор заявок по критерию приоритетности;
  • - ограничение времени ожидания момента наступления обслуживания (имеет место очередь с ограниченным временем ожидания обслуживания, что ассоциируется с понятием «допустимая длина очереди»).

Механизм обслуживания определяется характеристиками самой процедуры обслуживания и структурой обслуживающей системы. К характеристикам процедуры обслуживания относятся: продолжительность процедуры обслуживания и количество требований, удовлетворяемых в результате выполнения каждой такой процедуры. Для аналитического описания характеристик процедуры обслуживания оперируют понятием «вероятностное распределение времени обслуживания требований».

Следует отметить, что время обслуживания заявки зависит от характера самой заявки или требований клиента и от состояния и возможностей обслуживающей системы. В ряде случаев приходится также учитывать вероятность выхода обслуживающего прибора по истечении некоторого ограниченного интервала времени.

Структура обслуживающей системы определяется количеством и взаимным расположением каналов обслуживания (механизмов, приборов и т. п.). Прежде всего, следует подчеркнуть, что система обслуживания может иметь не один канал обслуживания, а несколько; система такого рода способна обслуживать одновременно несколько требований. В этом случае все каналы обслуживания предлагают одни и те же услуги, и, следовательно, можно утверждать, что имеет место параллельное обслуживание.

Система обслуживания может состоять из нескольких разнотипных каналов обслуживания, через которые должно пройти каждое обслуживаемое требование, т. е. в обслуживающей системе процедуры обслуживания требований реализуются последовательно. Механизм обслуживания определяет характеристики выходящего (обслуженного) потока требований.

Рассмотрев основные компоненты систем обслуживания, можно констатировать, что функциональные возможности любой системы массового обслуживания определяются следующими основными факторами:

  • - вероятностным распределением моментов поступлений заявок на обслуживание (единичных или групповых);
  • - вероятностным распределением времени продолжительности обслуживания;
  • - конфигурацией обслуживающей системы (параллельное, последовательное или параллельно-последовательное обслуживание);
  • - количеством и производительностью обслуживающих каналов;
  • - дисциплиной очереди;
  • - мощностью источника требований.

В качестве основных критериев эффективности функционирования систем массового обслуживания, в зависимости от характера решаемой задачи могут выступать:

  • - вероятность немедленного обслуживания поступившей заявки;
  • - вероятность отказа в обслуживании поступившей заявки;
  • - относительная и абсолютная пропускная способность системы;
  • - средний процент заявок, получивших отказ в обслуживании;
  • - среднее время ожидания в очереди;
  • - средняя длина очереди;
  • - средний доход от функционирования системы в единицу времени и т.п.

Предметом теории массового обслуживания является установление зависимости между факторами, определяющими функциональные возможности системы массового обслуживания, и эффективностью ее функционирования. В большинстве случаев все параметры, описывающие системы массового обслуживания, являются случайными величинами или функциями, поэтому эти системы относятся к стохастическим системам.

Независимо от характера процесса, протекающего в системе массового обслуживания, различают два основных вида СМО:

  • - системы с отказами, в которых заявка, поступившая в систему в момент, когда все каналы заняты, получает отказ и сразу же покидает очередь;
  • - системы с ожиданием (очередью), в которых заявка, поступившая в момент, когда все каналы обслуживания заняты, становится в очередь и ждет, пока не освободится один из каналов.

Системы массового обслуживания с ожиданием делятся на системы с ограниченным ожиданием и системы с неограниченным ожиданием.

В системах с ограниченным ожиданием может ограничиваться:

  • - длина очереди;
  • - время пребывания в очереди.

В системах с неограниченным ожиданием заявка, стоящая в очереди, ждет обслуживание неограниченно долго, т.е. пока не подойдет очередь.

По количеству каналов обслуживания СМО подразделяются на следующие группы:

Одноканальные СМО. Она состоит из одной очереди и одного устройства обслуживания. Термин "одноканальная" говорит о том, что к устройству обслуживания ведет только один путь.

Многоканальные СМО. Обслуживание очередной заявки может начаться до окончания обслуживания предыдущей заявки. Каждый канал действует как самостоятельное обслуживающее устройство.

По кругу обслуживаемых объектов различают два вида.

Замкнутые СМО. Замкнутая система массового обслуживания - это система массового обслуживания, в которой обслуженные требования могут возвращаться в систему и вновь поступать на обслуживание. Примерами замкнутой СМО являются ремонтные мастерские, сберегательные банки.

Открытые СМО. Для открытой СМО предполагается, что исходная совокупность на столько велика, что изменение ее размеров, вследствие прибытия или возвращения обслуженной заявки в исходную совокупность не оказывает существенного влияния на вероятность появления очередной заявки. массовый обслуживание математический однофазный

Если приборы обслуживания соединяются параллельно, то такое обслуживание называется однофазным, а если приборы соединяются последовательно, то многофазным, (ряд последовательных операций).

Однофазные СМО - это однородные системы, которые выполняют одну и ту же операцию обслуживания.

Многофазные СМО - это системы, в которых каналы обслуживания расположены последовательно и выполняют различные операции обслуживания. Примером многофазной СМО являются станции технического обслуживания автомобилей.

Приведенная классификация СМО является условной. На практике чаще всего СМО выступают в качестве смешанных систем. Например, заявки ожидают начала обслуживания до определенного момента, после чего система начинает работать как система с отказами.

В 1953 году Г. Кендалл предложил стандартные обозначения определений, которые используются исследователями без изменений. Для однофазных СМО символика Кендалла выглядит следующим образом:

A / B / n / m 2.1

Где A и B входной поток и поток обслуживания соответственно,

n - число каналов, n 1,

m - ёмкость накопителя.

Потоки случайных событий могут иметь различный вид:

  • - М - экспоненциальное распределение длительностей интервалов поступления заявок или длительностей обслуживания (индекс М от определяющего слова марковский процесс, т.е. такой, когда поведение процесса после момента времени t зависит лишь от состояния процесса в момент времени t и не зависит от поведения до момента времени t),
  • - D - детерминированное распределение длительностей интервалов поступления заявок или длительностей обслуживания,
  • - Ек - поток Эрланга к - го порядка для длительностей интервалов между приходами заявок или длительностей обслуживания,
  • - GI - рекуррентный поток (длительности интервалов статистически независимы и имеют одинаковое распределение),
  • - G - общий вид распределения.

Тогда в символах Кендалла вместо А и В подставляется символ одного из упомянутых потоков, например:

M/M/1 - экспоненциальные потоки с одним каналом обслуживания и неограниченной ёмкостью.

D/GI/5/10 - детерминированный входной поток, рекуррентный поток обслуживания, многоканальное СМО с 5 одинаковыми каналами, ёмкость накопителя 10 и т.д.

Каждый из нас не раз в своей жизни стоял в очередях и знает, как много времени это отнимает.

Многие модели, призванные решить или оптимизировать эту проблему, требуют сложных математических формулировок .

Очередь - это линия ожидания . Теория очередей - часть более широкой теории, в рамках которой проводятся оперативные исследования и создаются математические модели. Все это делается с одной целью - решить проблемы, которые создает стояние в очередях. Здесь важно найти компромиссный вариант, учитывающий систему расходов и среднее время ожидания в очереди. анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

Первопроходцем в теории очередей был датский математик Агнер Краруп (1878-1929), взявшийся
анализировать телефонную систему в Копенгагене, чтобы разрешить проблему загруженности телефонных линий.

В теории изучения очередей существуют законы Харпера , подобные знаменитым законам Мерфи.

  • Первый закон Харпера : неважно, в какую очередь ты становишься - всегда есть одна, движущаяся быстрее остальных.
  • Второй закон Харпера : если ты переходишь в другую очередь, та, которую ты покинул, начинает двигаться быстрее.

Проблема очередей

Современный человек проводит в ожидании более или менее значительную часть своей жизни. Разве есть среди нас те, кто никогда не стоял в очереди? Мир ожидания очень разнообразен: очереди машин на въезде на платную дорогу, очереди самолетов на выезде на взлетную полосу и, как следствие, очереди пассажиров к стойкам регистрации; очередь к банкоматам в больших зданиях, очередь на прием к врачу или очередь телефонных звонков, которые должны быть обработаны на пожарной станции… Это лишь некоторые примеры. пытается создать модели, поддающиеся последующей математической обработке.

Модели очередей

Некоторые модели очередей очень просты, другие требуют применения сложных математических теорий. Первичная классификация разбивает их на две большие группы.

Детерминированная очередь - наиболее простая модель, которую можно заранее спрогнозировать, опираясь на известные условия, например, временные интервалы прибытия и ожидания. Это «очередь без сюрпризов».

Вероятностная очередь не может быть описана без применения вероятностей. Это более реалистичная модель, чем предыдущая. В дождливый день, например, есть большая вероятность того, что увеличатся очереди на стоянках такси и уменьшатся очереди в кассы зоопарка.

Этот метод, предложенный Данцигом, Кестеном и Ранненбергом (метод коллективных меток - method of collective marks) и развитый затем Г.П. Климовым (метод «катастроф»), позволяет легко получить аналитические результаты в ситуациях, когда другие известные методы приводят к трудоемким выкладкам. Особенно эффективен он оказался при анализе ненадежных и приоритетных систем массового обслуживания.

Сущность этого метода заключается в следующем. Пусть требуется найти некоторое распределение, характеризующее функционирование СМО. Производящей функции этого распределения (если распределение дискретное) или его преобразованию Лапласа - Стилтьеса придается вероятностный смысл за счет «раскрашивания» запросов или введения в рассмотрение потока «катастроф». Затем вводится в рассмотрение некоторое (дополнительное) случайное событие и вероятность его подсчитывается в терминах производящей функции или преобразованию Лапласа - Стилтьеса искомого распределения двумя различными способами. В результате получается уравнение, решением которого является функция, которая интересует исследователя.

Проиллюстрируем этот метод, применив его для нахождения вероятностных характеристик системы M\G\1. Важной характеристикой производительности многих реальных систем является распределение периода занятости системы. Период занятости есть интервал времени с момента поступления запроса в пустую систему до момента, когда система впервые вновь окажется пустой. Знание периода занятости позволяет решать задачи, связанные, например, с планированием проведения в системе профилактических работ, исследованием возможности дополнительной загрузки прибора выполнением некоторой второстепенной «фоновой» работы и т.д.

Обозначим функцию стационарного распределения длины периода занятости в рассматриваемой системе, -ее преобразование Лапласа - Стилтьеса.

Считаем, что выполняется условие:

гарантирующее существование стационарного распределения длины периода занятости рассматриваемой СМО.

Утверждение 13.

Преобразование Лапласа - Стилтьеса распределения длины периода занятости рассматриваемой СМО удовлетворяет следующему функциональному уравнению:

Доказательство. Легко видеть, что распределение длины периода занятости системы не зависит от того, в каком порядке обслуживаются запросы. Для облегчения анализа структуры периода занятости предположим, что запросы обслуживаются в инверсионном порядке, то есть на обслуживание всегда выбирается запрос, пришедший в систему последним. Такая дисциплина выбора из очереди кодируется как LIFO (Last In - First Out) или LCFS (Last Came - First Served). При такой дисциплине выбора из очереди каждый запрос как бы порождает период занятости системы запросами, пришедшими в систему после него. Причем структура и, следовательно, распределение длины периода занятости, порожденного некоторым запросом, такие же, как структура и распределение длины периода занятости системы. Используя эти рассуждения, мы приходим к пониманию того, что период занятости системы состоит из времени обслуживания первого запроса, с которого начался период занятости, и случайного числа периодов занятости, порожденных запросами, пришедшими в систему за время обслуживания первого запроса.

Теперь предположим, что независимо от функционирования данной системы поступает простейший поток катастроф интенсивности s. Введем в рассмотрение (дополнительное) событие А, состоящее в том, что за данный период занятости не поступили катастрофы.

Напомним, что согласно вероятностной трактовке преобразования Лапласа - Стилтьеса, величина есть вероятность того, что не произойдет ни одной катастрофы за случайное время, имеющее функцию распределения H(t). Поэтому легко понять, что вероятность события А определяется следующим образом:

Найдем теперь вероятность этого же события иначе. Назовем произвольный запрос «плохим», если за период занятости, порожденный им, наступает катастрофа. Используя достигнутое нами понимание структуры периода занятости, нетрудно убедиться, что для того, чтобы запрос, с которого начался период занятости, был неплохим (вероятность этого есть Р(А)), необходимо и достаточно, чтобы за время его обслуживания не поступили события из суммарного потока катастроф и потока плохих запросов.

Поток катастроф является простейшим потока интенсивности s. Поток плохих запросов получается из исходного простейшего потока интенсивности в результате применения простейшей процедуры рекуррентного просеивания (произвольный запрос включается в просеянный поток с вероятностью независимо от других запросов). Поэтому, согласно Утверждению 6, просеянный поток является простейшим потоком интенсивности Согласно Утверждению 5, суммарный поток катастроф и плохих запросов является простейшим потоком интенсивности

Таким образом, используя еще раз вероятностную трактовку преобразования Лапласа - Стилтьеса мы получаем следующую формулу для вероятности события :

Сравнивая выражения (1.83) и (1.84), мы убеждаемся в справедливости формулы (1.82). Утверждение 13 доказано.

Уравнение (1.82), полученное Дж. Кендаллом в 1951 году, имеет единственное решение в области Res > 0, такое, что

В случае, если распределение времени обслуживания показательное, рассматриваемая система есть М|М|1 и преобразование Лапласа - Стилтьеса распределения времени обслуживания имеет вид: При этом функциональное уравнение (1.82) переходит в квадратное уравнение для неизвестного преобразования Лапласа - Стилтьеса

Решая уравнение (1.85), получаем:

В этой формуле выбираем только знак чтобы полученное решение удовлетворяло условию Обращая теперь преобразование Лапласа - Стилтьеса получаем следующее выражение для производной функции распределения длины периода занятости системы М|М|1:

где функция есть модифицированная функция Бесселя первого рода.

В общем случае уравнение (1.82) можно решать методом итераций, снабдив функцию индексом в левой части уравнения и индексом в правой части. Эта процедура имеет геометрическую скорость сходимости последовательности к значению при фиксированном значении аргумента

Кроме того, путем последовательного дифференцирования уравнения (1.82) с последующей подстановкой аргумента и учета свойства 5 преобразования Лапласа - Стилтьеса, можно получить рекуррентную последовательность формул для вычисления начальных моментов распределения длины периода занятости. Так, среднее значение длины периода занятости и второй начальный момент ее распределения определяются формулой:

Как и следовало ожидать, с ростом коэффициента загрузки и приближением его значения к единице среднее значение периода занятости стремится к бесконечности.

Рассмотрим теперь другую характеристику функционирования системы M\G\1 - число запросов, обслуженных за период занятости. Обозначим

Утверждение 14. Производящая функция удовлетворяет следующему функциональному уравнению:

Доказательство. Производящей функции придадим вероятностный смысл следующим образом. Каждый из запросов независимо от других назовем красным с вероятностью z и синим с дополнительной вероятностью. Произвольный запрос назовем темнокрасным, если он сам красный и за период занятости, порожденный им, в системе обслуживались только красные запросы. Введем событие А, состоящее в том, что запрос, с которого начинается период занятости, является темно-красным. Найдем вероятность этого события. С одной стороны, очевидно, что

С другой стороны, из проделанного выше анализа структуры периода занятости ясно, что для того, чтобы запрос был темно-красным, необходимо и достаточно, чтобы он сам был красным (вероятность этого равна z) и за время его обслуживания могли поступать только темно-красные запросы.

Так как поток запросов - простейший с параметром , а произвольный запрос является темно-красным с вероятностью , то поток нетемно-красных вызовов (как это следует из Утверждения 6) является простейшим с параметром Вспоминая вероятностную интерпретацию преобразования Лапласа - Стилтьеса, из приведенных рассуждений выводим следующую альтернативную формулу для вероятности события

Сравнивая формулы (1.90) и (1.91), убеждаемся в справедливости (1.89). Утверждение 14 доказано.

Уравнение (1.89) определяет единственную аналитическую в области функцию, такую, что

Следствие. Среднее число запросов, обслуженных в системе M\G\1 за один период занятости, задается формулой:

Приведем еще одно доказательство формулы Поллячека-Хинчина для производящей функции распределения вероятностей числа запросов в системе M\G\1 в моменты окончания обслуживания. Каждый из запросов, приходящих в систему, независимо от других назовем красным с вероятностью 2 и синим с дополнительной вероятностью. Введем событие А, состоящее в том что запрос, уходящий в данный момент окончания обслуживания из системы, сам красный и все запросы, остающиеся в системе в этот момент, тоже красные.

Из вероятностной интерпретации производящей функции очевидно следует, что:

где есть искомая производящая функция распределения вероятностей числа запросов в системе в моменты окончания обслуживания.

С другой стороны, для того, чтобы произошло событие А, необходимо и достаточно, чтобы все запросы, которые находились в системе в предыдущий момент окончания обслуживания (если система была непуста), были красными и за время обслуживания не пришли синие запросы, а если система была пуста, то первый пришедший запрос должен быть красным и за время его обслуживания не пришли синие запросы.

Из этих рассуждений следует, что:

Из соотношений этого соотношения и (1.92) очевидным образом следует формула Поллячека - Хинчина:

полученная нами ранее с помощью метода вложенных цепей Маркова.

В заключение подраздела найдем характеристики системы M\G\1 с дисциплиной LIFO.

Выше отмечалось, что распределение периода занятости системы M|G|1 не зависит от дисциплины обслуживания. Поэтому уравнение (1.82) определяет преобразование Лапласа - Стилтьеса распределения периода занятости для всех дисциплин. Кроме того, несложно видеть, что и распределения числа запросов в системе M\G\1 при дисциплинах FIFO и LIFO совпадают и задаются формулой (1.81).

Распределение времени ожидания запроса при дисциплинах FIFO и LIFO различно. При дисциплине FIFO преобразование Лапласа - Стилтьеса стационарного распределения времени ожидания задается формулой (1.52).

Утверждение 15. При дисциплине LIFO преобразование Лапласа - Стилтьеса имеет следующий вид:

где функция является решением уравнения (1.82).

Доказательство. Введем поток катастроф и понятие «плохого» запроса, как это было сделано при доказательстве Утверждения 13. При этом функция есть вероятность того, что за время ожидания данного запроса не наступит катастрофа, а функция есть вероятность того, что произвольный запрос не является «плохим», то есть катастрофа не наступает за период занятости, порожденный этим запросом.

Учитывая сущность дисциплины LIFO и рассуждения, использованные при доказательстве Утверждения 13, получаем формулу:

где есть преобразование Лапласа - Стилтьеса распределения остаточного (после момента поступления запроса, время ожидания которого мы исследуем) времени обслуживания запроса, находящегося на приборе.

Очередь грузовиков под разгрузку на склад, ожидание клиентами банка свободного кассира. Если, например, клиентам приходится слишком долго ждать кассира, они могут решить перенести свои счета в другой банк. Подобным образом, если грузовикам приходится слишком долго дожидаться разгрузки, они не смогут выполнить столько ездок за день, сколько положено. Таким образом, принципиальная проблема заключается в уравновешивании расходов на дополнительные каналы обслуживания (больше людей для разгрузки грузовиков, больше кассиров, больше клерков, занимающихся предварительной продажей билетов на самолеты) и потерь от обслуживания на уровне ниже оптимального (грузовики не могут сделать лишнюю остановку из-за задержек под разгрузкой, потребители уходят в другой банк или обращаются к другой авиакомпании из-за медленного обслуживания).  

Теория игр - это метод, используемый для оценки влияния какого-либо действия на конкурентов. Моделями теории очередей можно пользоваться в соответствии со спросом на них. Модели управления запасами помогают руководителю синхронизировать размещение заказов на ресурсы и оптимизировать их объемы, а также определять оптимальное для склада количество готовой продукции . Модели линейного программирования позволяют установить оптимальный способ распределения дефицитных ресурсов между конкурирующими потребностями в них. Имитационное моделирование - это использование устройства, которое имитирует реальный мир. В экономическом анализе используется ряд методов для определения экономического положения организации или осуществимости действия с экономической точки зрения.  

Настоятельная потребность маркетинга и. предпринимательства в целом в полном и объективном освещении рыночных процессов , в достоверном предсказании возможного развития рынка. Понятие маркетингового исследования , его роль в бизнесе и удовлетворении информационно-аналитических потребностей маркетинга. Место маркетингового исследования в разработке стратегии маркетинга , планировании маркетинга и его контроллинге. Предмет и объекты маркетингового исследования . Цели маркетингового исследования . Принципы маркетингового исследования . Два направления маркетингового исследования формализация и качественные оценки. Достоинства и недостатки каждого из них. Возможности их консолидации. Основы методологии маркетингового исследования . Особая роль статистики и эконометрики в маркетинговых исследованиях . Теория массового обслуживания (теория очередей). Понятие статистического банка (набора статистических приемов обработки информации).  

Данный метод также предусматривает разложение проблемы на части и изучение каждой из них. Важным инструментом данного метода является разработка и проигрывание с использованием количественных методов и компьютеров различных моделей решения. Разработаны и используются модели с привлечением системного подхода , исследования операций , теории игр, теории очередей, уп-  

В 60-е гг. широко применялась такая техника планирования , как оперативное исследование. Речь идет об использовании научной техники управления для анализа проблемы и оценки возможных решений. Сюда входят теория очередей, игр, имитационное моделирование . Применение той или иной модели в процессе планирования зависит от накопления и анализа объективной информации. Предполагается, что информация должна поступать в каналы управления в достаточном объеме и в нужное время. Это самый ценный актив организации.  

К числу важнейших инструментов и методов исследования операций относятся теория вероятности , метод обратных связей , линейное программирование , символическая логика, теория информации и связей, теория очередей, теория игр, теория поисков.  

Изложенные обстоятельства позволяют для моделирования науки в регионе использовать математический аппарат теории очередей. Согласно этой теории, науку можно считать системой массового обслуживания (СМО). СМО, как известно, называется любая система, предназначенная для обслуживания каких-либо заявок, поступающих в нее в случайные моменты времени.  

Теория очередей позволяет находить вероятности различных состояний СМО, а также устанавливать зависимости между заданными параметрами (числом каналов п, интенсивностью потока заявок Я, распределением времени обслуживания и т.д.) и характеристиками эффективности работы СМО. В качестве таких характеристик могут рассматриваться следующие  

Усовершенствуем формулы теории очередей применительно к специфике науки. Условия существования стационарного режима, по мнению автора, будут иметь место при следующих обстоятельствах  

Читатель найдет здесь доступное описание основных экономико-математических методов , построенных как на традиционном аппарате математики и логики, известном из школьных программ (дроби, проценты, уравнения, прогрессии, геометрические и логические задачи), так и на основе методов исследования операций - современном математическом аппарате , специально созданном для решения тех задач, с которыми элементарная математика не справляется. Это методы оптимизации (линейное, нелинейное и динамическое программирование), теория вероятностей и математическая статистика , теория массового обслуживания (теория очередей), метод статистических испытаний (Монте-Карло), теория игр и статистических решений, сетевое планирование.  

Наряду с элементарной математикой и логикой рассматриваются также задачи, требующие применения аппарата высшей математики, особенно в теории вероятностей и математической статистике , а также в таких сравнительно молодых методах, как математическое программирование (линейное, нелинейное, динамическое), теория игр и статистических решений, теория массового обслуживания (теория очередей), метод статистических испытаний (Монте-Карло), сетевое планирование.  

Если при поступлении очередной заявки все имеющиеся каналы (аппараты) оказываются занятыми, происходит сбой в обслуживании и начинает образовываться очередь. Поэтому теорию массового обслуживания называют также теорией очередей.  

Центральным понятием теории очередей является функция стоимости, равная  

Если величина N больше 1, вычисления приобретают более сложный характер. Общая формула приведена в Приложении 1, где также обсуждаются другие проблемы теории очередей. Для JV, равных 2 и 3, формулы выглядят следующим образом  

В этой главе рассмотрены различные аспекты выбора места и планировки производственных площадей . Сокращение денежных, трудовых, временных и иных затрат возможно на основе определения общей производственной мощности , а для сферы услуг - использования теории очередей (массового обслуживания) для нахождения оптимального баланса между объемом простаивающего оборудования и временем ожидания покупателя в очереди.  

В русскоязычной литературе теория очередей иногда называется теорией массового обслуживания.  

Применение М. М.-К. можно проиллюстрировать примером из области теории очередей. Предположим, надо определить, как часто и как долго придется ждать покупателям в очереди в магазине при заданной его пропускной способности (допустим, для того, чтобы принять решение , следует ли расширять магазин). Подход покупателей носит случайный характер, распределение времени подхода (так можно назвать промежуток времени между каждыми двумя приходами покупателей) может быть установлено из имеющейся информации. Время обслуживания покупателей тоже носит случайный характер, и его распределение тоже может быть выявлено. Таким образом, имеются два стохастических или случайных процесса , взаимодействие которых и создает очередь.  

Следует сказать и о терминах "Т.м.о." и "теория очередей". Во многих работах они трактуются как равнозначные, в других - теория очередей рассматривается лишь как раздел Т.м.о., поскольку последней изучаются системы не только с очередями, но и с отказами (напр., когда телефонная станция занята, очередь абонентов не образуется), а также некоторые иные.  

Рыжиков Ю.И. Теория очередей и управление запасами . -СПб. Питер, 2001.-384 с.  

Статистика - наука, изучающая массовые явления и процессы, поддающиеся количественному измерению, позволяющая выявлять тенденции и закономерности общественного развития, определять пропорции и оценивать колеблемость. Эконометрия -применение экономико-математических методов анализа , измерение параметров математических выражений, характеризующих определенную социально-экономическую концепцию, моделирование сложных, многомерных процессов и явлений. Достаточно широко в маркетинге используются методы линейного и динамического программирования , приемы теории массового обслуживания (теории очередей), теории принятия решений (теории риска), теории связей (сигнальной информации о процессах, выходящих за пределы установленных параметров). Социометрия - характеристика структуры и функционирования определенных человеческих групп с помощью количественных оценок . Квалиметрия - методология количественных оценок качества товаров . Бихевиоризм - наука о вкусах и предпочтениях людей, которая помогает разобраться в процессах формирования и изме-  

Часто бывает, что запросы на обслуживание отдельных клиентов или заказы индивидуальных покупателей продукции поступают в систему случайным образом. Это так называемая проблема случайных клиентов. Единственный путь, который позволяет удовлетворять таких заказчиков, если накопление продукции и ожидание клиентов исключается, это составление внешнеориентированного расписания в сочетании с общим избытком мощности системы (избытком всех ее ресурсов). На практике такое расточительное резервирование встречается редко и поэтому части заказчиков, обращающихся в систему, приходится либо предлагать ожидание, либо отказывать, неся при этом определенные экономические             Управление качеством (1974) -- [

Ожидание того или иного вида обслуживания является частью нашей повседневной жизни. Мы ожидаем, чтобы пообедать в ресторане, мы стоим в очереди к кассам в магазинах и выстраиваемся в очередь в почтовых отделениях. Очередь возникает практически во всех присутственных местах: налоговых инспекциях, паспортных столах, страховых компаниях и пр. Феномен ожидания характерен не только для людей: работы, поставленные в очередь для выполнения; группа пассажирских самолетов, ожидающих разрешения на посадку в аэропорту; автомобили, движение которых приостановлено сигналом светофора на пути их следования, грузовые суда, ожидающие погрузки/разгрузки в порту, и т.п.

Изучение очередей в системах массового обслуживания (СМО) озволяет определить критерии функционирования обслуживающей системы, среди которых наиболее значимыми являются среднее время ожидания в очереди и средняя длина очереди. Эта информация используется затем для выбора надлежащего уровня обслуживания, что продемонстрировано в следующем примере.

Пример 2.6.1. Физические лица, сдающие декларацию о доходах, жалуются на медленное обслуживание. В настоящее время в данном подразделении работают три налоговых инспектора. В результате расчетов, формулы для которых мы рассмотрим ниже, обнаружена следующая зависимость между числом инспекторов и временем ожидания обслуживания.

Число инспекторов 1 2 3 4 5 6 7

Среднее время ожидания 80.2 50.3 34.9 24.8 14.912.9 9.4

______(минуты) _______________________________________

Приведенные данные свидетельствуют о том, что при работающих в настоящее время трех инспекторах среднее время ожидания обслуживания примерно равно 35 минут. По мнению посетителей, приемлемо было бы 15 минут ожидания. Как следует из этих же данных, среднее время ожидания становится меньше 15 минут, если число инспекторов больше или равно пяти.

Результаты исследования системы обслуживания также можно использовать для оптимизации модели со стоимостными характеристиками, в которой минимизируется сумма затрат, связанных с предоставлением услуг, и потерь, обусловленных задержками в их предоставлении. На рис. 2.6.1 изображена типичная стоимостная модель системы обслуживания, где затраты на обслуживание возрастают с ростом его уровня. В то же время потери, обусловленные задержками в предоставлении услуг, уменьшаются с возрастанием уровня обслуживания.


Уровень обслуживания

Главной проблемой, связанной с применением стоимостных моделей, является трудность оценки потерь в единицу времени, обусловленных задержками в предоставлении услуг.

Задачи массового обслуживания возникают в том случае, когда заявки на обслуживание (или требования ) не могут быть выполнены в силу занятости обслуживающего персонала (оборудования) или сама обслуживающая система оказывается бездействующей в силу отсутствия заявок. При моделировании данных задач используются фундаментальные понятия теории вероятности, т.к. случайными оказываются поток требований или длительность времени обслуживания, или и то и другое. При решении этих задач приходится определять либо оптимальное число обслуживающих каналов, либо оптимальную скорость потока (или находить моменты поступления заявок).

Класс моделей, пригодных для решения подобных задач, называют еще теорией очередей.

Эта теория представляет особый раздел теории случайных процессов и использует, в основном, аппарат теории вероятностей. Первые публикации в этой области относятся к 20-м гг. XX в. и принадлежат датчанину А. Эрлангу, занимавшемуся исследованиями функционирования телефонных станций – типичных СМО, где случайны моменты вызова, факт занятости абонента или всех каналов, продолжительность разговора. В дальнейшем теория очередей нашла развитие в работах К.Пальма, Ф.Поллачека, А.Я.Хинчина, Б.В.Гнеденко, А.Кофмана, Р.Крюона, Т. Cаати и других отечественных и зарубежных математиков.

При решении задач, связанных с очередями, возможны две ситуации:

а) число заказов слишком велико; имеет место большое время ожидания (недостаточный объем обслуживающего оборудования );

б) поступает недостаточное число заказов; имеет место простой оборудования (избыток оборудования ).

Необходимо найти оптимальное соотношение между потерями, вызванными простоем оборудования, и потерями из-за ожидания.

В качестве основных элементов СМО следует выделить входной поток заявок, очередь на обслуживание, cистему (механизм) обслуживания и выходящий поток заявок. В роли заявок (требований, вызовов) могут выступать покупатели в магазине, телефонные вызовы, поезда при подходе к железнодорожному узлу, вагоны под разгрузкой, автомашины на станции техобслуживания, самолеты в ожидании разрешения на взлет, штабель бревен при погрузке на автотранспорт. Роль обслуживающих приборов (каналов, линий) играют продавцы или кассиры в магазине, таможенники, пожарные машины, взлетно-посадочные полосы, экзаменаторы, ремонтные бригады.

По характеру случайного процесса, происходящего в СМО, различают системы марковские и немарковские.

Случайный процесс называется марковским , если для любого момента времени t вероятностные характеристики процесса в будущем зависят только от его состояния в данный момент t и не зависят от того, когда и как система пришла в это состояние. Рассмотренные ниже модели относятся к марковским системам.

В случае немарковских процессов задачи исследования СМО значительно усложняются и требуют применения статистического моделирования, численных методов с использованием ЭВМ.

Что еще почитать